Toward ultra high magnetic field sensitivity YBa2Cu3O72d nanowire based superconducting quantum interference devices
نویسندگان
چکیده
We report on measurements of YBa2Cu3O7 d nanowire based Superconducting QUantum Interference Devices (nanoSQUIDs) directly coupled to an in-plane pick-up loop. The pick-up loop, which is coupled predominantly via kinetic inductance to the SQUID loop, allows for a significant increase of the effective area of our devices. Its role is systematically investigated and the increase in the effective area is successfully compared with numerical simulations. Large effective areas, together with the ultra low white flux noise below 1 lU0= ffiffiffiffiffiffi Hz p , make our nanoSQUIDs very attractive as magnetic field sensors. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4948477]
منابع مشابه
Quantum Interference Control of Ballistic Magneto- resistance in a Magnetic Nanowire Containing Two Atomic- Size Domain Walls
The magnetoresistance of a one-dimensional electron gas in a metallic ferromagnetic nanowire containing two atomic-size domain walls has been investigated in the presence of spin-orbit interaction. The magnetoresistance is calculated in the ballistic regime, within the Landauer-Büttiker formalism. It has been demonstrated that the conductance of a magnetic nanowire with double domain walls...
متن کاملTHESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Development of high-T c SQUID magnetometers for on-scalp MEG
This thesis describes the development of high critical temperature superconducting quantum interference device (high-Tc SQUID) magnetometers based on bicrystal grain boundary and nanowire junctions for the potential use in on-scalp magnetoencephalography (MEG), which is a new generation MEG technique with reduced sensor-to-subject standoff distances. MEG is a method of mapping neural dynamics i...
متن کاملQuantum interference device made by DNA templating of superconducting nanowires.
The application of single molecules as templates for nanodevices is a promising direction for nanotechnology. We used a pair of suspended DNA molecules as templates for superconducting two-nanowire devices. Because the resulting wires are very thin, comparable to the DNA molecules themselves, they are susceptible to thermal fluctuations typical for one-dimensional superconductors and exhibit a ...
متن کاملNanowire acting as a superconducting quantum interference device.
We present the results from an experimental study of the magnetotransport of superconducting wires of amorphous indium-oxide having widths in the range 40-120 nm. We find that, below the superconducting transition temperature, the wires exhibit clear, reproducible, oscillations in their resistance as a function of magnetic field. The oscillations are reminiscent of those that underlie the opera...
متن کاملParahydrogen-enhanced zero-field nuclear magnetic resonance
Nuclear magnetic resonance, conventionally detected in magnetic fields of several tesla, is a powerful analytical tool for the determination of molecular identity, structure and function. With the advent of prepolarization methods and detection schemes using atomic magnetometers or superconducting quantum interference devices, interest in NMR in fields comparable to the Earth’s magnetic field a...
متن کامل